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Abstract--We use an electrical impedance technique to measure the fluctuations of gas volume fraction 
in a gas-liquid bubble column in turbulent flow regime. From these experimental values the volume 
fraction autocorrelation function is determined. On the theoretical side, we introduce a stochastic model 
to describe the aggregation of bubbles by assuming them to be rigid spheres of different diameters and 
by considering their coalescence as a stochastic Markovian process. The coalescence rate contains one 
adjustable parameter which takes into account the neglected effects of compressibility and deformation, 
spatial inhomogeneities and hydrodynamic interactions between the bubbles and with the boundaries. The 
associated master equation for this polydispersed system is built up, and from it we derive an equation 
for the volume fraction equilibrium correlation functions for several bubble sizes. By adjusting the free 
parameter, we compare the theoretical correlations with corresponding experimental values and find that 
the standard deviation associated with their difference can be made as small as 0.017. We discuss the 
limitations and possible generalizations of our model and conclude by making further physical remarks. 
© 1997 Elsevier Science Ltd 
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1. I N T R O D U C T I O N  

Bubble  co lumns  are  indust r ia l  equ ipment  filled up with a l iquid and  a gas. The l iquid phase  flows 
as a con t inuous  phase  while the gas flows as a set o f  d ispersed bubbles .  M a n y  chemical  
he te rogeneous  reactors  are  bubble  co lumns  where react ions  usual ly  take  place in the l iquid phase,  
once a reactive chemical  has been a b s o r b e d  f rom a gaseous s t ream th rough  the interfacial  films 
between bubbles  and liquid. Bubble  co lumns  can also conta in  solid part icles  in the l iquid s tream. 
Depend ing  upon  the solid par t ic le  size and the device used to lift the part icles ,  the reac tor  can be 
a s lurry or  a three-phase  fluidized bed.  Both  pe t rochemica l  and  env i ronmenta l  app l ica t ions  are 
i m p o r t a n t  examples  o f  the use o f  these reactors .  Trans ien t  p h e n o m e n a  are  impor t an t  at  the s ta r t -up  
o f  these equipments ,  and  their  analysis  is i m p o r t a n t  in o rde r  to character ize  the dynamic  behavior  
o f  the system and  to get a bet ter  insight into the p h e n o m e n a  dr iving some events such as pa t t e rn  
t ransi t ions .  

Bubble  channels  are also present  in the nuclear  reac tor  technology,  known  as B W R  (boi l ing 
water  reactor) .  Trans ien t  p h e n o m e n a  are o f  eno rmous  impor t ance  in the ope ra t ion  o f  these reactors  
in o rde r  to prevent  instabi l i t ies  tha t  could  drive the system out  o f  con t ro l  and  p roduce  severe 
accidents .  The  dynamic  charac te r iza t ion  o f  the two-phase  flow is therefore  an excellent tool  for 
the p revent ion  o f  instabil i t ies.  

Trans ien t  analysis  is bui l t  on the basis o f  da t a  t aken  in records  or  t ime series, which are  the most  
i m p o r t a n t  exper imenta l  i n fo rma t ion  required.  Time series analysis  has been main ly  re la ted with 
the ident i f icat ion o f  flow pat terns .  Electr ical  impedance  signals are based on the d i sc r imina t ion  o f  
the electr ical  conduc t iv i ty  o f  the l iquid and  the gas. A p r imary  vol tage  signal is thus ob ta ined  at 
a selected sampl ing  frequency.  F o r  the purpose  o f  la ter  c ompa r i son  o f  these exper imenta l  da t a  with 
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theoretical predictions, we first express the time series in terms of a variable known as the void 
fraction. Then we compute the volume fraction autocorrelation functions. These quantities give 
the residence time tr of a given signal in the measurement zone. 

Although the calculation of correlation functions for gas-liquid systems is rather scarce in the 
literature, there exist some papers dealing with models of  autocorrelation functions for gas-liquid 
systems in a horizontal column (Drahos et al. 1987) or for liquid-solid fluidized beds (Cerm~k et al. 
1979; Yutani et al. 1983, 1986, 1987). The basic purpose of our work is to present a stochastic 
model which takes into account the possibility of  coalescence between bubbles and that allows us 
to calculate volume fraction correlation functions. More specifically, since any event that leads to 
the spontaneous creation or annihilation of particles is strictly speaking a probabilistic event, it 
should be formulated in terms of probability distributions. However, a statistical description does 
not necessarily imply a stochastic approach. The essential difference lies in the importance of 
fluctuations in the chosen state variables. For instance, a stochastic description of a system with 
a small population is justified if the fluctuations in the number of particles are large. In this case 
it is necessary to know higher order moments of  the probability distribution beyond its average. 
On the other hand, a system with a large population can be described statistically in terms of its 
average (deterministic) behavior only, if the fluctuations around the average number are and remain 
small so that they can be neglected. For systems in thermodynamic equilibrium, fluctuations in the 
state variable are known to be small; however, for nonequilibrium states they can increase and 
become an essential part of its dynamical behavior (Haken 1975). This is the case of  disperse 
nonlinear multistable systems in the vicinity of  gelation points (Family and Landau 1984; 
Salinas-Rodriguez and Rodriguez 1995), since these points represent the stability limit of the 
stationary states and the corresponding thermodynamic forces that maintain them vanish as the 
system is closer to the transition points. Therefore, since the magnitude of the fluctuations is a 
measure of  the validity of a macroscopic description, and since in the experiments to be described 
below fluctuations turned out to be important,  it is of  interest both theoretically and practically 
to study fluctuation dynamics around the average behavior. 

To this end the paper is organized as follows. In section 2 we first define the relevant experimental 
parameters and the flow pattern of  the gas phase for which experimental measurements were carried 
out. Then the experimental set-up is described and we discuss how the time series were captured. 
The way in which the experimental volume fraction autocorrelation functions are computed from 
the void fraction time series is also established. In section 3 we introduce a stochastic model to 
describe the experimental observations by assuming that the observed coalescence of bubbles is a 
Markovian process. We then derive a time evolution equation for the probability density of this 
process and calculate the theoretical volume fraction correlation functions. Finally, in section 4 
we compare our theoretical predictions with experimental observations and find good agreement 
expressed by very small values of  the standard deviation. We conclude by pointing out some 
advantages, limitations and possible generalizations of our approach. 

2. EXPERIMENTAL 

2.1. Experimental definitions and concepts 

The topological structure of  a bubbling flow can be characterized by its geometric parameters 
known as the volume fraction of bubbles, sometimes referred to as the void fraction (Eo), and the 
specific interfacial area (a~) (Soria and De Lasa 1992). Both variables are absent in flows with only 
one phase. Bubble columns operate in a wide range of liquid and gas flow rates. The superficial 
liquid velocity (vsL) is the liquid flow rate divided by the cross-section area of  the column. This 
parameter  is sometimes referred to as the volumetric liquid flux. A similar definition is also used 
for the superficial gas velocity (Vso), also called the volumetric gasflux. The sum of both superficial 
velocities is the velocity of the mixture center of volume, known as the mixture velocity (vo) or total 
volumetric' f lux (Wallis 1969). 

While superficial liquid velocities in bubble column reactors usually go from zero up to 0.100 m/s, 
superficial gas velocities frequently range from 0.010 to 0.200 m/s, although sometimes high gas 
throughputs up to 0.400 m/s are operated. The dispersed gas phase takes on some specific 
configurations, called flow patterns, mainly depending on the gas flow rate. At low enough 
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superficial gas velocities a homogeneous bubbling (HB) flow pattern is observed, where bubbles are 
uniformly distributed inside the column. At high superficial gas velocities strong interactions 
between bubbles are observed and are manifested as interface deformations, bubble collisions and 
strong agitation. Strong liquid circulation is also observed. It is conventional to call this regime 
the churn-turbulent bubbling flow pattern (CTB). Both regimes can exist when the superficial liquid 
velocity vanishes, since liquid circulation is produced by the fast displacement of big bubbles and 
clusters of bubbles. 

The transition between HB and CTB flow patterns can be characterized from a plot of ~G vs 
Vsc. The rate of change of  EG with respect to VsG has two distinct asymptotic slopes, the larger one 
being characteristic of  the HB regime and the smaller one corresponding to the CTB regime. It 
is apparent that flow patterns were not originally associated with specific ranges of  a Reynolds 
number (Zahradnik and Fialov~i 1996) as is frequently the case in hydrodynamics. Flow pattern 
identification has also been done through the statistical characterization of pressure drop signals 
(Glasgow et al. 1984; Drahos and Cermak 1989; Drahos et al. 1991) or void fraction signals 
(Micaelli 1982; Bernier 1982; Turnaire 1987; Kyt6maa and Brennen 1988, 1991; Sofia and De Lasa 
1992) recorded at 102 to 103 Hz. In order to get those signals, electronic instruments such as 
piezoelectric pressure transducers or electrical impedance electrodes have been used. 

2.2. Experimental set-up 

The bubble column utilized was a Plexiglas vertical column, 0.20 m in diameter and 2.6 m in axial 
length above the distributor. The column was adapted with a set of electrodes, with the first 
measuring electrode placed 0.914 m above the distributor. The electrodes were flush to the inside 
walls of the column, as can be appreciated in figure I. Five pairs of measuring electrodes were 
alternated with six pairs of  guard electrodes. All electrodes were rectangles of  0.157 × 0.075 m 2 and 
each electrode of a pair was placed at n radians from the other at the column cross-section. The 
distributor was a brass grid with 1240 holes, 8 x 10 -n m in diameter, separated with an equilateral 
pitch of  5.0 × 10 -3 m. A concentric pipe mixer was adapted upstream of  the distributor in order 
to produce a two-phase air-water mixture, which impacted the distributor from below in a thin 
chamber, from which the two-phase mixture flowed through the holes (Soria and De Lasa 1992). 
The range of  superficial gas velocity up to 0.0470 m/s and the superficial water velocity was 
maintained at 0.0197 m/s. This design allowed us to get a uniform swarm of air bubbles in the water 
stream (Soria 1991), which conserved its identity at low gas flow rates with scarce coalescence 
events. When high gas flow rates were established, bubbles or jets emerging from the distributor 
were observed to coalesce immediately, giving rise to the characteristic CTB regime. The transitions 
between HB and CTB regimes can be appreciated from our data in figure 2, taken at a constant 
superficial liquid velocity VsL = 0.0197 m/s. Two straight lines can be drawn for the data shown, 
crossing around the point Vs~ = 0.0100 m/s and E~ = 0.15. This point is close to the transition 
between the mentioned flow patterns. 

2.3. Data treatment 

Time series were captured at a frequency of I00 Hz in a time of 10 s. This sampling frequency 
was selected, according to the Nyquist frequency, in order to capture most of the relevant 
phenomena relative to the motion of void fraction waves (Bernier 1982; Turnaire 1987; 
Saiz-Jabardo and Bour6 1989; Soria 1991; Soria and De Lasa 1992). Simultaneous time series were 
captured, one for each of the first two measuring levels. Then the primary time series were changed 
to the corresponding void fraction time series by using a Maxwell algorithm (Maxwell 1904) 
adapted with an adjustable constant which accounted for errors in the physical sizes of the 
electrodes. Experimental void fraction time series can be observed for a homogeneous bubbling 
regime (HB regime) and for a churn-turbulent regime (CTB regime) in figure 3. 

Experimental autocorrelation functions Ee"P(t), that is those measured in the same section of the 
column, were computed for void fraction time series according to the definition. 

1 I0o0 - i 

Eex~U)- lO00-j' F~ Eo(i)eo(i+j) 
i=O 

[1] 
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Figure I. Schematic representation of the XX' plane of the bubble column, where the diameter of the 
circle indicates the XX' section (-. - .). The section between the dashed lines indicates the measuring zone 
for electrodes, level 2. All dimensions are in millimeters. GE and ME denote, respectively, the guard and 

measuring electrodes. 

where j is a time lag index which divided by the sampling frequency gives the time lag in seconds. 
It should be stressed that these autocorrelations are estimated for each of the measuring levels and 
are normalized with respect to the value Eo - E ( j  = 0). 

Normalized autocorrelations are shown in figure 4 for CTB. They show that for short times 
the autocorrelation function values are large; in this case they mainly give information about the 
residence of a void fraction signal in the measuring influence zone. In contrast, for large times 
the autocorrelations are weaker and contain both the influence of uncontrollable noise effects and 
the dynamic characteristics of the electrical measuring technique, since the electric potential 
measuring volume changes slightly depending on the presence of bubbles in the measuring 
surroundings. In this work we will identify the residence time tr with point A in figure 4, which 
defines the lowest autocorrelation value after removing the part of the signal contained between 
the dashed lines, Clearly, this definition is not unique, but later on we will use it consistently in 
the theoretical calculations. 

3. THEORETICAL CONSIDERATIONS 

3,1. Mode l  and basic equations 

A characteristic initial bubble diameter was estimated from the experimental void fraction 
propagation speed relative to the mixture velocity. The value of this parameter is in the order of 



GAS VOLUME FRACTION AUTOCORRELATION FUNCTION 

1.00 

97 

! 

e L 

0.95 \ 
\ 090 \\y 

0.85 I\ "~" a- . . . o ,  o 

I o ~ . o  

o,8o • 

0,75 I [ 
0 0.01 0.02 0.03 

V ~  (m/s) 

o'- 
I I 

0.04 0.05 

Figure 2. Liquid volume fraction EL vs vss for homogeneous bubbling (- - -) and churn-turbulent bubbling 
(-. - .  -) flow patterns for VSL = 0.0197 m/s. The circles denote experimental values. 

0.15 m/s (Soria 1991; Soria and De Lasa 1992). Therefore taking this velocity as an approximation 
to the terminal velocity of  the bubbles, whose expression using Stokes approximation for a sphere 
is vm = 2R2(pL -- pc)g/(91~L) (Bird et al. 1960; Gaddis and Vogelpohl 1986). Here pL is the dynamic 
viscosity of  water, pe and pG are the water and air densities, respectively, and R is the bubble radius. 
For  air-water  flow at room temperature, the bubble radius turned out to be R -- 2.6 x 10 -3 m, 
approximately. 

In the first and second measuring levels of  the bubble column, where all the measurements were 
carried out, we assume that there are N spherical and rigid air bubbles at time t. A state of  the 
bubbles is characterized by each realization of  the size distribution {mk}, where mk denotes the 
number  of  bubbles of  size k. According to the observations described in the previous section, the 
sizes of  the bubbles increase, approximately, up to 2 or 3 times their initial size in the CTB regime; 
therefore, we assume that k = 1, 2 and 3 only. When the bubbles come randomly into contact 
among themselves they coalesce or adhere to one another, changing the size distribution m - {ink }. 
Thus, the vector m is a stochastic variable with a probability distribution function P(m, t) which 
represents the probability that the number of  bubbles of  size k at time t is given by rnk when the 
system is considered to be spatially homogeneous. 
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Figure 3. Time series for void fraction function Ec for HB and CTB regimes. 
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F igure  4. Norma l i zed  exper imenta l  vo lume fract ion au tocor re la t ion  funct ion for CTB regime. Poin t  A 
indicates  the exper imenta l  residence time. 

The coalescence of bubbles will be modeled as a Markovian stochastic process described by the 
probability distribution function P(m, t). Then the time evolution of P(m, t) is governed by the 
following master equation (van Dongen and Ernst 1987; Salinas-Rodriguez 1992; van Kampen 
1993): 

P(m, t) = K~Ao[P(m, t ) ( m j  - flu)m,] 
i , j  = 1 

[2] 

where V - VL + VG is the volume of  the liquid-gas mixture contained in the section of  the column 
under consideration and the operator A,, is defined by 

A~f(m) =- j [ {mk  + (6,k + 6i, --  6,.i.k)}] --f(m) [31 

where f(m) is an arbitrary function of m and 6,k is the usual Kronecker delta. 
The coalescence kernel K,~ denotes the probability per unit time that two bubbles of sizes i and 

j coalesce to produce a bubble of size i + j (Salinas-Rodriguez et  al.  1991; Blackman and Marshall 
1994; Blackman 1995; Leyvraz 1995). Clearly, Ki/should be a function of the sizes i a n d j  and its 
explicit form depends on the specific mechanism of coalescence. Thus, given K0 the essential 
problem consists in solving [2] for a given initial distribution P°(m) -~ P(m, t = 0). 

Since the volume fraction e = V c , / V  and V can be measured, the initial number of bubbles 
No = N ( t  = 0) can be estimated to be No = e V / V ~ ,  where V~ is the volume of one spherical bubble 
of an initially monodisperse swarm of bubbles. Therefore No turns out to be No ~ 5300 for the CTB 
regime. 

As the bubbles enter the section of the column where the measurements are carried out, they 
coalesce. For the observed CTB regime we shall assume that K~z may be modeled by the turbulent 
coalescence kernel K~, whose expression was derived by Saffman and Turner (1956) in the modeling 
of the coalescence of droplets in clouds. They considered an isotropic fully developed turbulent 
flow and assumed that the size of the dispersed phase is smaller than the length scale of the smallest 
eddies. This leads to 

K~ = f l ( i  + j)3 [4] 

where/~ - [3"¢/v. Here ~ is the rate of energy dissipation per unit mass, v is the kinematic viscosity 
of water, v - txL/pc, and/? '  is also an adjustable parameter which accounts for corrections due to 
the neglected deformation and compressibility effects. Actually, later on we shall rather adjust the 
value of/~ instead of that for/~ '  to compare our calculations with our experimental results. 
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3.2. Volume fraction correlation function 

The moments of P(m, t) are defined by 

99 

(my,(t)) - ~ m',(t)P(m, t). [5] 
k 

Time evolution equations may be derived from [2] by multiplying each term by m'k(t) and summing 
over all possible states k. For the first moment this yields 

_Ca 8t (ink(t)) = 2~ ..L Ki;Au(mi)(mJ)" 
t d =  I 

[6] 

Now, if the size distribution function or distribution of the average sizes of clusters is defined as 

Ck(t) =-- (mk( t ) )  [7] 
V 

[6] may be rewritten as 

d 
d~ G ( t )  = K,jA,jC, Q 

i , )= I 

[8] 

or using [3] as 

d Ck(t)= 1 k , L dt 2 ~ (K/.k-jC/G-i)- KkjC, Q. 
[ = 1  j = l  

[9] 

This is the well-known Smoluchowski equation (Smoluchowski 1916; Friedlander 1977), which is 
the usual starting point in a statistical description of the aggregation processes occurring in a variety 
of systems. Incidentally, the derivation of [9] from [2] shows that this commonly used approach 
is a particular case of our stochastic description (van Dongen and Ernst 1987; Salinas-Rodriguez 
1992). 

The size autocorrelation function is defined as 

~C,k(t) =-- ( (m,( t )mk(t) )  ) =- ~ mkmsP(m, t). 
m 

[lO] 

This quantity is a measure of the influence (correlation) that a bubble of radius s produces on one 
of  radius k. If  each term of  [2] is multiplied by mkm, and summed over all the possible values of 
m, one arrives at the following equation for took: 

d K,k(t) --= L A-v~cjk(t) + A~)¢),(t) [1 l] 
dt 

J = l  

with 

1 L K~j(6ik + 6i, -- &+jk)G(t) Akj(t) -- ~ 
/ = 1  

[12] 

and where Q is the size distribution function defined by [8]. 
Now, in order to relate Xsk with the volume fraction autocorrelation function E(t) introduced 

in section 2.3, we first define the fluctuations of the volume fraction E(t) with respect to a stationary 
mean value ( e )  as 

& ( t )  ---_ E(t) - ( E ) .  [13] 
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In this way, the autocorrelation function of the fluctuations &(t)  is given by 

E(t) = ( (&(t)&(0)>> -~ (~o<&(t)>,o> [14] 

where ~0 --- E(0) is the initial value of the volume fraction and the subscript ~0 in angular brackets 
denotes a conditional average on the initial value ~0. 

On the other hand, since 

VG(t) = ~ V;m;(t) {15] 

where V~ and m, are, respectively, the volume and number of bubbles of size j at time t, from [10] 
it follows that the volume fraction autocorrelation function is related with ~,, by 

1 
E(t) = -(  ~. V;V;~co(t) -~ ~ E,(t).  [161 

t j  I,; 

It should be emphasized that while •,; is the size correlation, [10], E,;(t) is the volume fraction 
correlation function for bubbles of two different volumes. It measures how one bubble of volume 
i influences another bubble of volume j. This expression offers the possibility of comparing the 
measured values of E°~P(t) given by [1] with the theoretical values Eth°°(t) obtained from [11] and 
[16]. More explicitly, for this purpose it is necessary to first solve [9] for a given initial size 
distribution function, Ck (t = 0). As previously mentioned, an initial monodisperse size distribution 
was assumed for computations. This fact means that we are lumping the whole effective coalescence 
process, given from the distributor up to the measuring level, as if it were virtually given in the 
measuring zone. While this assumption enhances the importance assigned to coalescence, as 
computed by the model, the mechanisms considered by the particular choice of the coalescence 
kernel K;; remain valid. Thus, it is reasonable to assume that the initial size distribution is 
monodisperse: 

G ( t  = O) = N,,&. [17] 

where N0 is the initial number of bubbles. Then, substitution of the solution of Smoluchowski's 
equation [9] into [12] yields Ak;(t). If the resulting expression for Akj(t) is then inserted into [11] 
and, consistently with [17] we also assume that 

= O) = V E ( t  = tCr;( l  0)6,, [18] 

[11] can be solved numerically and E(t) is afterwards calculated from [16]. E(t = 0) is obtained from 
the experimental data according to [1]. The numerical solution of [9] and [11] is obtained by using 
the Dgear routines from the IMSL routine package. 

4. RESULTS AND DISCUSSION 

Following the procedure outlined above, we calculated Ethe°(t)/Eo and plotted it against the 
residence time tr, defined previously, as shown in figure 5 for the CTB regime. The corresponding 
values of E°xp(t)/Eo are also shown in the same figure as measured in the second section of the 
column. It is important to emphasize once more that in our model there is only one free parameter, 
/3, for the considered flow regime, whose value, owing to the physical interpretation given in the 
previous section, has to be adjusted to obtain good agreement between theory and experiment. To 
obtain these curves, the so-far unspecified parameter /3 introduced in [4] was determined by 
minimizing the standard deviation between the experimental time series and theoretical curve. This 
was achieved with the value/3 = 1.5 x 10 -7 s -1 m -3. The standard deviation or average error is the 
difference between the experimental, E°XP(i6t), and theoretical, Uh°°(i6t,/3), values for the same time 
i6t, where/3 is our parameter to be adjusted. Then, a measure of our theoretical method with respect 
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F igure  5. E(t)/Eo vs residence t ime tr for CTB regime; ( - - )  exper imenta l  values,  ( - -  -) theoret ical  curve. 

to the experimental data is given by [E~= ~ (E~"e°(i6t) - E~xp(i6t))2]. The standard deviation or average 
error of  the estimation is defined as (Bevington and Robinson 1992) 

I _11/2 
cr = ,=,~ (E the° ( i 6 t )  - -  E~xp(i6t))2/NJ [191 

where 6t is the time step selected for the integration of the system of  differential equations, and 
N6t is the total time of simulation, a turned out to be a = 0.07 for CTB. This expression, [19], 
estimates the statistical average error of  our theoretical autocorrelation functions with the 
experimental data. 

To see that the probability of  coalescence between bubbles of  different sizes is not the same, let 
us define the normalized volume fraction correlation function e~ as eo.(t) = Ea(t)/Eo. As mentioned 
earlier, this quantity measures the correlation between bubbles of  different volumes. I f  we plot eo(t) 
vs tr for CTB, we obtain the curves in figure 6. They show that, consistently with the assumption 
of  the monodisperse initial size distribution, at the beginning the strongest correlation is between 
bubbles of  the same initial size, that is e l , .  However, as tr increases, correlations e,2, e,3, e:2, e23 and 
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Figure  6. Norma l i zed  vo lume f rac t ion  cor re la t ion  funct ions  e~i(t) vs residence t ime tr for CTB regime: (-) 
e~,; ( - - )  e,_,; ( ' . . )  e,3; ( - - - )  e2_,; ( . . . .  ) e2s; ( - - - )  es3. 
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e33 build up between bubbles of the new volumes that appear due to coalescence, but clearly they 
do not have the same weight in the total correlation E(t) - E~j e~j. We should stress at this point 
that the assumption of a monodisperse size distribution for each of the measuring levels could 
introduce severe limitations to the present discussion since the coalescence process takes place in 
the whole column. 

At this point it is convenient to emphasize that the probabilities of coalescence Ko should really 
be determined by taking into account many effects that have been neglected in our analysis. For 
instance, they may depend on the spatial position in the cell and they should also be affected by 
deformation effects. Furthermore, compressibility, spatial inhomogeneities and hydrodynamic 
interactions between bubbles and with the boundaries should be taken into account as well. 
However, given the complexity of these effects and of the system itself, this simple model seems 
to be a good first step in modeling the complex behavior of a bubble column in CTB flow regime. 

On the one hand, we should stress again that the results obtained with this model show that 
the agreement between the experimental and theoretical values of E(t) is good, with standard 
deviation as low as 0.017. This fact reinforces the point of view advocated above in the sense that 
the coalescence of bubbles may be considered as a stochastic Markovian process. 

In this work we have only analyzed the coalescence of bubbles in the second section of the 
column for which an initial monodisperse size distribution has been proposed. While this 
assumption has proved to be reasonable, some improvement might be reached if different initial 
distributions are considered at the upper levels of the bubble column (Rodriguez et al. 1997). 

It is also worth emphasizing once more that the definition of the residence time tr is not unique. 
For instance, from the experimental curve in figure 4, tr could be defined as well as the asymptotic 
intersection of the tangent line through point A with the time axis. Alternatively, it may also be 
defined as the first intersection of the autocorrelation function with the time axis. However, the 
point we want to stress is that our theoretical analysis has been carried out consistently with the 
definition of tr given in section 2. Whether further generalizations of our model or different 
definitions of tr than the one we have adopted are more useful remains to be assessed. 
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